
高一三角函数的计算公式包括:
1. 正弦函数(sin)的计算公式:sin(A+B) = sinAcosB + cosAsinB,sin(A-B) = sinAcosB - cosAsinB
2. 余弦函数(cos)的计算公式:cos(A+B) = cosAcosB - sinAsinB,cos(A-B) = cosAcosB + sinAsinB
3. 正切函数(tan)的计算公式:tan(A+B) = (tanA + tanB) / (1 - tanAtanB),tan(A-B) = (tanA - tanB) / (1 + tanAtanB)
高一数学三角函数公式
sinα=∠α的对边/斜边
cosα=∠α的邻边/斜边
tanα=∠α的对边/∠α的邻边
cotα=∠α的邻边/∠α的对边
倍角公式
Sin2A=2SinA?CosA
Cos2A=CosA²-SinA²=1-2SinA²=2CosA²-1
tan2A=(2tanA)/(1-tanA²)
(注:SinA²是sinA的平方sin2(A))
三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cosα·cos(π/3+α)cos(π/3-α)
tan3a=tana·tan(π/3+a)·tan(π/3-a)
三倍角公式推导
sin3a=sin(2a+a)=sin2acosa+cos2asina
三角函数辅助角公式
Asinα+Bcosα=(A²+B²)’(1/2)sin(α+t),其中
sint=B/(A²+B²)’(1/2)
cost=A/(A²+B²)’(1/2)
tant=B/A
Asinα+Bcosα=(A²+B²)’(1/2)cos(α-t),tant=A/B
降幂公式
sin²(α)=(1-cos(2α))/2=versin(2α)/2
cos²(α)=(1+cos(2α))/2=covers(2α)/2
tan²(α)=(1-cos(2α))/(1+cos(2α))
三角函数推导公式
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos²α
1-cos2α=2sin²α
1+sinα=(sinα/2+cosα/2)²=2sina(1-sin²a)+(1-2sin²a)sina=3sina-4sin³a
cos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos²a-1)cosa-2(1-sin²a)cosa=4cos³a-3cosa
sin3a=3sina-4sin³a=4sina(3/4-sin²a)=4sina[(√3/2)²-sin²a]=4sina(sin²60°-sin²a)=4sina(sin60°+sina)(sin60°