当前位置:首页>维修大全>综合>

奇数偶数找规律的窍门(奇数和偶数口诀)

奇数偶数找规律的窍门(奇数和偶数口诀)

更新时间:2025-04-16 16:32:01

奇数偶数找规律的窍门

奇数是单数,偶数是双数。奇数不能够被二整除,偶数才能够被二整除。这就是偶数和奇数,找规律的窍门。偶数能够被二整除,奇数不能够被二整除。这就是偶数和奇数,找规律的窍门。

单数与双数规律:单数加减单数得双数,双数加减双数得双数;单数加减双数得单数,双数加减单数得单数。单数乘以单数得单数,双数乘以双数得双数;单数乘以双数得双数,双数乘以单数得双数。

一、基本概念和知识

1.奇数和偶数

  整数可以分成奇数和偶数两大类.能被2整除的数叫做偶数,不能被2整除的数叫做奇数。

  偶数通常可以用2k(k为整数)表示,奇数则可以用2k+1(k为整数)表示。

  特别注意,因为0能被2整除,所以0是偶数。

2.奇数与偶数的运算性质

  性质1:偶数±偶数=偶数,

  奇数±奇数=偶数。

  性质2:偶数±奇数=奇数。

  性质3:偶数个奇数相加得偶数。

  性质4:奇数个奇数相加得奇数。

  性质5:偶数×奇数=偶数,

  奇数×奇数=奇数。

二、例题

利用奇数与偶数的这些性质,我们可以巧妙地解决许多实际问题.

例1:1+2+3+…+1993的和是奇数?还是偶数?

分析:此题可以利用高斯求和公式直接求出和,再判别和是奇数,还是偶数.但是如果从加数的奇、偶个数考虑,利用奇偶数的性质,同样可以判断和的奇偶性.此题可以有两种解法。

  解法1:∵1+2+3+…+1993

  又∵997和1993是奇数,奇数×奇数=奇数,

  ∴原式的和是奇数。

  解法2:∵1993÷2=996…1,

  ∴1~1993的自然数中,有996个偶数,有997个奇数。

  ∵996个偶数之和一定是偶数,

  又∵奇数个奇数之和是奇数,

  ∴997个奇数之和是奇数。

  因为,偶数+奇数=奇数,

  所以原式之和一定是奇数。

例2一个数分别与另外两个相邻奇数相乘,所得的两个积相差150,这个数是多少?

  解法1:∵相邻两个奇数相差2,

  ∴150是这个要求数的2倍。

  ∴这个数是150÷2=75。

  解法2:设这个数为x,设相邻的两个奇数为2a+1,2a-1(a≥1).则有

  (2a+1)x-(2a-1)x=150,

  2ax+x-2ax+x=150,

  2x=150,

  x=75。

  ∴这个要求的数是75。

例3:元旦前夕,同学们相互送贺年卡.每人只要接到对方贺年卡就一定回赠贺年卡,那么送了奇数张贺年卡的人数是奇数,还是偶数?为什么?

分析此题初看似乎缺总人数.但解决问题的实质在送贺年卡的张数的奇偶性上,因此与总人数无关。

  解:由于是两人互送贺年卡,给每人分别标记送出贺年卡一次.那么贺年卡的总张数应能被2整除,所以贺年卡的总张数应是偶数。

  送贺年卡的人可以分为两种:

  一种是送出了偶数张贺年卡的人:他们送出贺年卡总和为偶数。

  另一种是送出了奇数张贺年卡的人:他们送出的贺年卡总数=所有人送出的贺年卡总数-所有送出了偶数张贺年卡的人送出的贺年卡总数=偶数-偶数=偶数。

  他们的总人数必须是偶数,才使他们送出的贺年卡总数为偶数。

  所以,送出奇数张贺年卡的人数一定是偶数。

例4:已知a、b、c中有一个是5,一个是6,一个是7.求证a-1,b-2,c-3的乘积一定是偶数。

  证明:∵a、b、c中有两个奇数、一个偶数,

  ∴a、c中至少有一个是奇数,

  ∴a-1,c-3中至少有一个是偶数。

  又∵偶数×整数=偶数,

  ∴(a-1)×(b-2)×(c-3)是偶数。

更多栏目