当前位置:首页>维修大全>综合>

必要性探路法如何取值(功效系数法权重怎么确定)

必要性探路法如何取值(功效系数法权重怎么确定)

更新时间:2025-04-16 01:06:20

必要性探路法如何取值

答:所谓必要性探路法,就是指对一类函数的恒成立问题,可以通过取函数定义域内的某个特殊的值或某几个特殊的值,先得到一个必要条件,初步获得参数的范围,再在该范围内讨论,或去验证其充条件,进而解决问题的方法.虽然这种必要性探路的方法求出的参数并不一定就是所求的实际范围,但可以限定问题成立的大前提,缩小参数的讨论范围,在一定程度可以减少分类讨论的类别,降低了思维成本.

例如:已知1ln(1)()x f x x

(0x ).若当0x 时,()1

k f x x 恒成立,求正整数k 的最大值.

【解析】(方法一)分离常数 当0x 时,()1k f x x

恒成立,即(1)[1ln(1)]x x k x

@孔树波

对任意(0,)x 恒成立.令(1)[1ln(1)]()x x h x x (0x ),求导,得21ln(1)()x x h x x . 记()1ln(1)g x x x (0x ),求()01x g x x

.所以()g x 单调递增. 又因为(2)1ln 30g ,(3)2ln 20g ,所以()g x 在(2,3)内有唯一的零点0x ,且00ln(1) 1.x x

当0x x 时,()0g x ,()0h x ,所以()h x 单调递增;当00x x 时,()0g x ,()0h x ,所以()h x 单调递减. 所以()h x 的最小值为00000

(1)[1ln(1)]()1(3,4)x x h x x x . 从而k 的最大值为3

更多栏目