两圆的公共弦方程公式是:(x-a1)^2+(y-b1)^2-(x-a2)^2-(y-b2)^2=r1^2-r2^2。
当两个圆相交时,两个交点的连线叫公共弦。(若只有一个交点,则称公共点。)两圆心所在直线垂直平分公共弦。推导过程:若圆C1:(x-a1)^2+(y-b1)^2=r1^2,圆C2:(x-a2)^2+(y-b2)^2=r2^2。两式联立得上述公式。
公共弦
两个圆若是相交,则至多交于2点。而将两圆的方程相减即是默认两条方程中有共同的解X、Y。而减后的方程必定满足X、Y(就是两个交点),换句话说,就是两个交点所共同满足的直线方程。而我们知道,平面内2点间有且只有1条直线,那么这条直线就是所求的公共弦。
设两圆分别为:x^2+y^2+c1x+d1y+e1=0。x^2+y^2+c2x+d2y+e2=0。两式相减得:(x^2+y^2+c1x+d1y+e1)-(x^2+y^2+c2x+d2y+e2)=0。这是一条直线的方程。