不能完全说导数是斜率。准确表达是函数在某点处导数值是图象在该点处切线斜率。这需要从导数定义说起。导数是函数平均变化率极限值。即(f(X。+△x)-f(X。))/△x,在△X→0时的值。而平均变化率是函数图像在过该点割线斜率。切线是割线的极限位置。所以导数几何意义就是切线斜率。
说导数是斜率是不准确的,应该是导数的几何意义是斜率。我们知道,导数的概念是,当自变量的变化量趋向于0时,函数值的变化量与自变量的变化量之比的极限值,我们从这个定义可以判断,当Δx趋向于0,也就是两个点趋向于一个点,对应图象上就是切线的斜率。