当前位置:首页>维修大全>综合>

sin cos性质表格(sin tan cos特殊值表)

sin cos性质表格(sin tan cos特殊值表)

更新时间:2025-05-26 03:26:37

sin cos性质表格

sin和cos是三角函数中常见的两个函数,它们有许多重要的性质。以下是它们的性质表格:

1. 定义域:sin和cos的定义域是实数集。

2. 值域:sin和cos的值域是[-1, 1]。

3. 周期性:sin和cos都是周期函数,周期为2π。

4. 奇偶性:sin是奇函数,即sin(-x)=-sin(x),而cos是偶函数,即cos(-x)=cos(x)。

5. 正交性:sin和cos在[0, 2π]区间上是正交的,即∫sin(x)cos(x)dx=0。

6. 三角恒等式:sin和cos满足许多重要的三角恒等式,如sin^2(x)+cos^2(x)=1和sin(2x)=2sin(x)cos(x)等。

7. 导数:sin和cos的导数分别是cos和-sin。

8. 反函数:sin和cos都有反函数,分别是arcsin和arccos。

这些性质使得sin和cos在数学和物理等领域中有广泛的应用,如解三角方程、描述周期性现象和振动等。

正弦函数 sinθ=y/r 余弦函数 cosθ=x/r 正切函数 tanθ=y/x

余切函数 cotθ=x/y 正割函数 secθ=r/x 余割函数 cscθ=r/y

以及两个不常用,已趋于被淘汰的函数:

正矢函数 versinθ =1-cosθ 余矢函数 vercosθ =1-sinθ

同角三角函数间的基本关系式:

·平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α)

·积的关系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα

cscα=secα*cotα

·倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1

直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边 正切等于对边比邻边,

三角函数恒等变形公式

·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

·辅助角公式: Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2)

cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

·倍角公式: sin(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)]

·三倍角公式: sin(3α)=3sinα-4sin^3(α) cos(3α)=4cos^3(α)-3cosα

·半角公式: sin(α/2)=±√((1-cosα)/2) cos(α/2)=±√((1+cosα)/2)

tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

·降幂公式 sin^2(α)=(1-cos(2α))/2=versin(2α)/2 cos^2(α)=(1+cos(2α))/2=vercos(2α)/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

·万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

·积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

·和差化积公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

·其他:

sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

部分高等内容

·高等代数中三角函数的指数表示(由泰勒级数易得):

sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2

tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]

泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…

此时三角函数定义域已推广至整个复数集.

·三角函数作为微分方程的

对于微分方程组 y=-y'';y=y'''',有通解Q,可证明 Q=Asinx+Bcosx,因此也可以从此出发定义三角函数.

补充:由相应的指数表示我们可以定义一种类似的函数——双曲函数,其拥有很多与三角函数的类似的性质,二者相映成趣.

特殊三角函数值

a 0` 30` 45` 60` 90`

sina 0 1/2 √2/2 √3/2 1

cosa 1 √3/2 √2/2 1/2 0

tana 0 √3/3 1 √3 None

cota None √3 1 √3/3 0

三角函数的计算

幂级数 c0+c1x+c2x2+...+cnxn+...=∑cnxn (n=0..∞) c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n (n=0..∞) 它们的各项都是正整数幂的幂函数, 其中c0,c1,c2,...cn...及a都是常数, 这种级数称为幂级数.

泰勒展开式(幂级数展开法): f(x)=f(a)+f'(a)/1!*(x-a)+f''(a)/2!*(x-a)2+...f(n)(a)/n!*(x-a)n+...

实用幂级数: ex = 1+x+x2/2!+x3/3!+...+xn/n!+... ln(1+x)= x-x2/3+x3/3-...(-1)k-1*xk/k+... (|x|

更多栏目