直线参数方程是高中数学在解析几何这一模块中非常重要的知识点,也是整个高中数学的一大难题,接下来我为你整理了数学参数方程公式,一起来看看吧。
数学参数方程公式
数学参数方程概念
一般在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数:x=f(t),y=g(t),并且对于t的每一个允许的取值,由方程组确定的点(x,y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x,
y的变数t叫做参变数,简称参数。
圆的参数方程
x=a+r cosθ y=b+r sinθ (a,b)为圆心坐标 r为圆半径 θ为参数
椭圆的参数方程
x=a cosθ y=b sinθ a为长半轴 长 b为短半轴长 θ为参数
双曲线的参数方程
x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数
抛物线的参数方程
x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数
直线的参数方程
x=x'+tcosa y=y'+tsina , x', y'和a表示直线经过(x',y'),且倾斜角为a,t为参数.
长轴左端点(0,-1)
椭圆一般参数方程x=2cosa y=sina
k=(sina+1)/2cosa=(sina/2+cosa/2)/2(cosa/2-sina/2)=(tana/2+1)/2(1-tana/2)
2k-2ktana/2=tana/2+1
(2k+1)tana/2=2k-1
令m=tana/2=(2k-1)/(2k+1)
x=2cosa=[2(cosa/2)^2-2(sina/2)^2]/[(cosa/2)^2+(sina/2)^2]=(2-2m^2)/(1+m^2)
y=sina=(2sina/2cosa/2)/[(cosa/2)^2+(sina/2)^2]=(2m)/(1+m^2)
所以参数方程为:
x=(2-2m^2)/(1+m^2)
y=2m/(1+m^2)
其中m=(2k-1)/(2k+1)