v1'=(2m2v2-m2v1v2+m1v1)/(m1+m2),v2'=(2m1v1-m1v2+m2v2)/(m1+m2)。
解析:
设:m1、m2分别代表两个小球的质量;
v1、v2分别代表碰撞前两个小球的速度;
v1',v2'分别代表碰撞后两个小球的速度
根据动量守恒定律有:m1v1+m2v2=m1v1'+m2v2'
根据能量守恒:1/2m1v1^2+1/2mv2^2=1/2mv1'^2+1/2mv2'^2
化简得:
v1'=(2m2v2-m2v1v2+m1v1)/(m1+m2)
v2'=(2m1v1-m1v2+m2v2)/(m1+m2)由机械能守恒定律和动量守恒定律两个表达式得到两个关于两球末速度作为未知条件的二元二次方程组,然后消去一个末速度,导出另一个末速度,再代回去得到另一个末速度。
这是数学中解二元二次方程组的基本方法。
完全弹性碰撞的速度公式是怎么推导的:由动量守恒:m1*v1+m2*v1=m1*u1+m2*u2能量守恒:0.5m1*v1^2+0.5m2*v2^2=0.5m1*u1^2+0.5m2*u2^2并不完全消元,可解得一个关系:v1+u1=v2+u2把式子变形一下就是v1-v2=u2-u1左边是碰撞前物体1接近物体2的相对速度。右边是碰撞后物体2离开物体1的相对速度。因此物理意义就是接近速度等于相离速度。