当前位置:首页>维修大全>综合>

什么是数据集(数据分析学习资料)

什么是数据集(数据分析学习资料)

更新时间:2025-07-24 21:51:45

什么是数据集

数据集(Dataset)是指在某个领域或者问题中收集到的一组相关数据的集合。它可以包含各种类型的数据,比如文本、图像、音频等,并可以用于各种机器学习算法和人工智能技术的训练和测试。

数据集通常都有自己的特征和属性,例如:数据类型、数据大小、数据来源、数据格式、数据标签等。用于同一目的的不同数据集可能会具有不同的特征,而且往往需要根据具体的应用场景进行设计和收集。

在机器学习和人工智能领域中,数据集的质量和数量对于模型的准确性和性能有着至关重要的影响。因此,为了提高机器学习模型的精度和泛化能力,在开展机器学习和人工智能项目时,通常都需要建立相应领域的大规模高质量数据集来进行训练。同时,公开分享和使用数据集也是科研共享和社区合作的重要手段之一。

数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。

数据集包含类型化数据集与非类型化数据集。

1.类型化数据集:

这种数据集先从基DataSet 类派生,然后,使用XML 架构文件(.xsd 文件)中的信息生成新类。

架构中的信息(表、列等)被作为一组第一类对象和属性生成并编译为此新数据集类。

可以直接通过名称引用表和列,在VS.NET中可以智能感知元素的类型。

2.非类型化数据集:

这种数据集没有相应的内置架构。

与类型化数据集一样,非类型化数据集也包含表、列等,但它们只作为集合公开。需要通过Tables集合引用列。

更多栏目