
一元函数的渐近线通常有三种。第一种是无穷间断点x0,渐近线就是x=x0。
第二种是x趋于正无穷或负无穷时,函数f(x)的极限f(inf),渐近线就是y=f(inf)。至于第三种,就是斜渐近线,斜率k是x趋于正无穷或负无穷时,f(x)/x的极限,截距b是x趋于正无穷或负无穷时,f(x)-kx的极限,渐近线就是
三种渐近线公式是:
1、水平渐近线:x→+∞或-∞时,y→c,y=c就是f(x)的水平渐近线;比如y=0是y=e^x的水平渐近线。
2、铅直渐近线:x→a时,y→+∞或-∞,x=a就是f(x)的铅直平渐近线;比如x=0是y=1/x的铅直渐近线。
3、斜渐近线
:当x→∞时,y/x极限为某一常数k,则y=kx+b为斜渐近线。
渐近线特点:
无限接近,但不可以相交。分为垂直渐近线、水平渐近线和斜渐近线。当曲线上一点M沿曲线无限远离原点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。需要注意的是:并不是所有的曲线都有渐近线,渐近线反映了某些曲线在无限延伸时的变化情况。
根据渐近线的位置,可将渐近线分为三类:水平渐近线、垂直渐近线、斜渐近线。y=k/x(k≠0)是反比例函数
,其图象关于原点对称
,x=0,y=0为其渐近线方程。当焦点在x轴上时双曲线渐近线
的方程是y=x。当焦点在y轴上时双曲线渐近线的方程是y=x。