
共边定理:设直线AB与PQ交于点M,则S△PAB/S△QAB=PM/QM
证明:分如下四种情况,分别作三角形高,由相似三角形可证
证法2:S△PAB=(S△PAM-S△PMB)
=(S△PAM/S△PMB-1)×S△PMB
=(AM/BM-1)×S△PMB(等高底共线,面积比=底长比)
同理,S△QAB=(AM/BM-1)×S△QMB
所以,S△PAB/S△QAB=S△PMB/S△QMB=PM/QM(等高底共线,面积比=底长比)
定理得证!

共边定理:设直线AB与PQ交于点M,则S△PAB/S△QAB=PM/QM
证明:分如下四种情况,分别作三角形高,由相似三角形可证
证法2:S△PAB=(S△PAM-S△PMB)
=(S△PAM/S△PMB-1)×S△PMB
=(AM/BM-1)×S△PMB(等高底共线,面积比=底长比)
同理,S△QAB=(AM/BM-1)×S△QMB
所以,S△PAB/S△QAB=S△PMB/S△QMB=PM/QM(等高底共线,面积比=底长比)
定理得证!