
方程e^x=a的解为x=lna。
解:e^x=a分别对等式两边取自然对数,得ln(e^x)=lna,x*lne=lna,x=lna即方程e^x=a的解为x=lna。
形如a^x=b的方程,可对等式两边同时取对数,得logₐa^x=logₐb,即x=logₐb。a^f(x)=a^g(x)的方程,可对等式两边同时取对数,化简为f(x)=g(x),然后进行求解。
e^x与e^(-ⅹ)是否相等要分以情形:1、当ⅹ﹥0时,∵e≈2.78∴e^ⅹ>e^(-ⅹ);
2、当x=0时,e^ⅹ=e^0=1=e^(-ⅹ)=e^(-0)=1即e^ⅹ与e^(-x)相等;
3、当x<0时,e^x<e^(-ⅹ)。