
经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线,又称“中垂线”。
垂直平分线可以看成到线段两个端点距离相等的点的集合,垂直平分线是线段的一条对称轴。
它是初中几何学科中非常重要的一部分内容。垂直平分线将一条线段从中间分成左右相等的两条线段,并且与所分的线段垂直(成90°角)。
垂直平分线的性质
1、垂直平分线垂直且平分其所在线段
2、垂直平分线上任意一点,到线段两端点的距离相等
3、三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等
垂直平分线的判定:
必须同时满足
1、直线过线段中点
2、直线垂直于线段
判定方法
1、利用定义:经过某一条线段的中点,并且垂直于这条线段的直线是线段的垂直平分线
2、到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。(即线段垂直平分线可以看成到线段两端点距离相等的点的集合)。
垂直平分线垂直且平分其所在线段;垂直平分线上任意一点到线段两端点的距离相等;三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等。
1垂线定义
当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直,其中一条直线叫做另一直线的垂线,交点叫垂足。
垂线段是一个图形,点到直线的距离是一个数量。
2垂直公理
在同一平面内,过一点(直线上或直线外)有且只有一条直线与已知直线垂直。
垂直
过直线AB上一点C作CP⊥AB,且CP是唯一的;同理,过直线AB外一点P作PC⊥AB,且PC是唯一的。
3垂线段公理
直线外一点与直线上各点连接的所有线段中,垂线段最短(简称“垂线段最短”)。
垂线段
已知PC⊥AB于点C,则PC﹤PA∧PB∧PD∧PE∧。
4垂径定理
垂径定理是数学平面几何(圆)中的一个定理,它的通俗的表达是:垂直于弦的直径平分弦且平分这条弦所对的两条弧。数学表达为:直径DC垂直于弦AB,则AE=EB,弧AD等于弧BD(包括优弧与劣弧),半圆CAD=半圆CBD.