
设椭圆方程为:x²/a²+y²/b²=1,已知点为:(x₀,y₀)
求导得:2x/a²+2yy'/b²=0
2yy'/b²=-2x/a²
y'=-b²x/a²y
把(x₀,y₀)代入x与y:y'=k=-b²x₀/a²y₀
所以切线方程是:y-y₀=-b²x₀(x-x₀)/a²y₀

已知椭圆上任意一点(m,n)求过该点的切线方程:设椭圆方程为x^2/a^2+y^2/b^2=1求导得2x/a^2+2yy'/b^2=02yy'/b^2=-2x/a^2y'=-b^2x/a^2y把(m,n)代入x与yy'=k=-b^2m/a^2n所以切线方程是y-n=-b^2m(x-m)/a^2n扩展资料椭圆方程的推导设椭圆的两个焦点分别为F1,F2,它们之间的距离为2c,椭圆上任意一点到F1,F2的距离和为2a(2a>2c)。
以F1,F2所在直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系xOy,则F1,F2的坐标分别为(-c,0),(c,0)。
设P(x,y)为椭圆上任意一点,根据椭圆定义知PF1+PF2=2a即将方程两边同时平方,化简得两边再平方,化简得又,设,得两边同除以这个形式是椭圆的标准方程。