当前位置:首页>维修大全>综合>

标准差和方差的区别(标准差和方差哪个好)

标准差和方差的区别(标准差和方差哪个好)

更新时间:2026-01-17 13:21:51

标准差和方差的区别

方差和标准差的区别如下:

1、概念不同。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数;标准差是总体各单位标准值与其平均数离差平方的算术平均数

 的平方根。

2、样本不同。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。

3、对于数据的表现不同。真正能反映稳定性的是标准差,因为它的单位和数据的单位是一样的,而方差的单位是数据单位的平方,所以方差有点夸大波动的情况。

4、方差是在概率论

 和统计方差衡量随机变量

 或一组数据时离散程度的度量,用来度量随机变量和其数学期望

 (即均值)之间的偏离程度。标准差在概率统计中常做统计分布程度上的测量,反映组内个体之间的离散程度,平均数相同的两组数据,标准差未必相同。

区别是,概念不同,计算方法不同,涵盖范围不同。

1、概念不同。

标准差是总体各单位标准值与其平均数离差平方的算术平均数的平方根。

方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。

2、计算方法不同。

样本标准差=方差的算术平方根=s=sqrt((x1-x)^2+(x2-x)^2+……(xn-x)^2)/(n-1))。

方差的计算公式为:设一组数据x1,x2,x3……xn中,各组数据与它们的平均数的差的平方分别是(x1-),(x2-)……(xn-),那么我们用他们的平均数来衡量这组数据的波动大小,并把它叫做这组数据的方差。

3、涵盖范围不同。

由于方差是数据的平方,一般与检测值本身相差太大,人们难以直观地衡量,所以常用方差开根号(取算术平方根)换算回来。这就是标准差。

方差等于各个数据与其算术平均数的离差平方和的平均数。其中,分别为离散型和连续型计算公式。称为标准差或均方差。

更多栏目