交点坐标公式是y=a(x-x1)(x-x2),但仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线,且在解决与二次函数的图象和x轴交点坐标有关的问题时,使用交点式较为方便。
交点坐标是两函数交点的坐标位置。
因此,研究抛物线y=ax+bx+c (a≠0)的图象,通过配方,将一般式化为y=a(x-h)+k 的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便。
抛物线y=ax+bx+c 的图象:当a>0时,开口向上"当a<0时,开口向下,对称轴是直线x=-b/2a,顶点坐标是[ -b/2a,(4ac-b2)/4a]。
抛物线y=ax²+bx+c ,若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小