当前位置:首页>维修大全>综合>

sin求导公式推导(sin求导的正确方法)

sin求导公式推导(sin求导的正确方法)

更新时间:2025-06-17 17:12:55

sin求导公式推导

给x一个增量△x,计算sin(x+△x)-sinx;计算sin(x+△x)-sinx与△x的比值,在△x趋近于0时的极限值,可以化为2cos(x+△x/2)sin(△x/2)除以△x的极限。这个极限值等于cosx。即sinx的导数是cosx。

1,推导过程

(sinx)'=lim[sin(x+△x)-sinx]/(△x),其中△x→0,

将sin(x+△x)-sinx展开,

sinxcos△x+cosxsin△x-sinx,由于△x→0,故cos△x→1,

从而sinxcos△x+cosxsin△x-sinx→cosxsin△x,

于是(sinx)’=lim(cosxsin△x)/△x,

△x→0时,lim(sin△x)/△x=1

所以

(sinx)’=cosx

2,三角函数导数公式

(sinx)'=cosx

(cosx)'=-sinx

(tanx)'=sec²x=1+tan²x

(cotx)'=-csc²x

(secx)'=tanx·secx

(cscx)'=-cotx·cscx.

(tanx)'=(sinx/cosx)'=[cosx·cosx-sinx·(-sinx)]/cos²x=sec²x

sinx是正弦函数,而cosx是余弦函数,两者导数不同。sinx的导数是cosx,而cosx的导数是-sinx,这是因为两个函数的不同的升降区间造成的。

sinx的导数是cosx(其中x是常数)

曲线上有两点(X1,f(X1)),(X1+△x,f(x1+△x))。当△x趋向0时,△y=(f(x1+△x)-f(x1))/△x 极限存在,称y=f(X)在x1处可导,并把这个极限称f(x)在X1处的导数,这是可导的定义。

根据定义,有(sinx)'=lim[sin(x+△x)-sinx]/(△x),其中△x→0,将sin(x+△x)-sinx展开,就是sinxcos△x+cosxsin△x-sinx,由于△x→0,故cos△x→1,从而sinxcos△x+cosxsin△x-sinx→cosxsin△x;

于是(sinx)’=lim(cosxsin△x)/△x,这里必须用到一个重要的极限,当△x→0时候,lim(sin△x)/△x=1,于是(sinx)’=cosx。

更多栏目