向量的数量积,也叫点积或内积,是指两
个向量的对应分量相乘再相加的结果,常
用符号为“.”。在几何上,向量的数量积可
以用来描述向量间的夹角以及向量在另一
个向量上的投影长度。下面我们将逐步阐
述向量的数量积的几何意义。
向量数量积的几何意义:一个向量在另一个向量上的投影。
定义
两向量的数量积等于其中一个向量的模与另一个向量在这个向量的方向上的投影的乘积
两向量α与β的数量积α·β=|α|*|β|cosθ其中|α||β|是两向量的模θ是两向量之间的夹角(0≤θ≤π)
若有坐标α(x1,y1,z1) β(x2,y2,z2)那么 α·β=x1x2+y1y2+z1z2 |α|=sqrt(x1^2+y1^2+z1^2)|β|=sqrt(x2^2+y2^2+z2^2)
把|b|cosθ叫做向量b在向量a的方向上的投影
因此用数量积可以求出两向量的夹角的余弦cosθ=α·β/|α|*|β|
已知两个向量A和B,它们的夹角为C,则A的模乘以B的模再乘以C的余弦称为A与B的数量积(又称内积、点积。)
即已知两个非零向量a和b,它们的夹角为θ,则数量|a||b|cosθ叫做a与b的数量积,记作a·b"·不可省略若用×则成了向量积
向量积性质
几何意义及其运用
叉积的长度 |a×b| 可以解释成这两个叉乘向量a,b共起点时,所构成平行四边形的面积。据此有:混合积 [abc] = (a×b)·c可以得到以a,b,c为棱的平行六面体的体积。