平行四边形的判定:两组对角分别相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形。
平行四边形是一种极其重要的几何图形,这不仅是因为他是研究更特殊的平行四边形——矩形、菱形、正方形的基础,还因为有它的定义知他可以分解为一些全等三角形,并且包含着有关平行线的许多性质,因此它在几何图形的研究上有着广泛应用。
1、两组对边分别平行的四边形是平行四边形(定义判定法)。
2、一组对边平行且相等的四边形是平行四边形。
3、两组对边分别相等的四边形是平行四边形。
4、两组对角分别相等的四边形是平行四边形(两组对边平行判定)。
5、对角线互相平分的四边形是平行四边形。
6、条件3仅在平面四边形时成立,如果不是平面四边形,即使是两组对边分别相等的四边形,也不是平行四边形。
根据平行四边形判定方法找条件,具体方法可以是:
1.两组对边分别平行的四边形是平行四边形;
2.一组对边平行且相等的四边形是平行四边形;
3.两组对边分别相等的四边形是平行四边形;
4.对角线互相平分的四边形是平行四边形;
5.两组对角分别相等的四边形是平行四边形;
6.所有邻角(每一组邻角)都互补的四边形是平行四边形