当前位置:首页>维修大全>综合>

等比数列的判定与性质(等比数列的基础知识及公式)

等比数列的判定与性质(等比数列的基础知识及公式)

更新时间:2025-07-25 07:48:11

等比数列的判定与性质

1、判定方法

(1)、an=an-1·q(n≥2),q是不为零的常数,an-1≠0{an}是等比数列.

(2)、an2=an-1·an+1(n≥2,

an-1,an,an+1≠0){an}是等比数列.

(3)、an=c·qn(c,q均是不为零的常数){an}是等比数列.

2、性质

设{an}为等比数列,首项为a1,公比为q.

(1)、当q>1,a1>0或0

1,a1<0或0

0时,{an}是递减数列;当q=1时,{an}是常数列;当q<0时,{an}是摆动数列.

(2)、an=am·qn-m(m、n∈n*).

(3)、当m+n=p+q(m、n、q、p∈n*)时,有am·an=ap·aq.

(4)、{an}是有穷数列,则与首末两项等距离的两项积相等,且等于首末两项之积.

(5)、数列{λan}(λ为不等于零的常数)仍是公比为q的等比数列;若{bn}是公比为q′的等比数列,则数列{an·bn}是公比为qq′的等比数列;数列是公比为的等比数列;{|an|}是公比为|q|的等比数列.

(6)、在{an}中,每隔k(k∈n*)项取出一项,按原来顺序排列,所得新数列仍为等比数列且公比为qk+1.

(7)、当数列{an}是各项均为正数的等比数列时,数列{lgan}是公差为lgq的等差数列.

(8)、{an}中,连续取相邻两项的和(或差)构成公比为q的等比数列.

(9)、若m、n、p(m、n、p∈n*)成等差数列时,am、an、ap成等比数列.

等比数列的性质

(1)若m、n、p、q∈N+,且m+n=p+q,则am×an=ap×aq。

(2)在等比数列中,依次每k项之和仍成等比数列。

(3)若“G是a、b的等比中项”则“G2=ab(G≠0)”

更多栏目