当前位置:首页>维修大全>综合>

裂项公式推导过程(六年级分数裂项公式大全)

裂项公式推导过程(六年级分数裂项公式大全)

更新时间:2025-09-22 10:55:32

裂项公式推导过程

推导如下所示:

这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:

(1)1/n(n+1)=1/n-1/(n+1)

(2)1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)]

(3)1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)]

(4)1/(√a+√b)=[1/(a-b)](√a-√b)

(5) n·n!=(n+1)!-n!

例【分数裂项基本型】求数列an=1/n(n+1) 的前n项和.

an=1/n(n+1)=1/n-1/(n+1) (裂项)

则 Sn=1-1/2+1/2-1/3+1/4…+1/n-1/(n+1)(裂项求和)

= 1-1/(n+1)

= n/(n+1)

更多栏目