当前位置:首页>维修大全>综合>

三角恒等变换所有公式分类以及推导方法 三角(三角恒等变换公式大全表格)

三角恒等变换所有公式分类以及推导方法 三角(三角恒等变换公式大全表格)

更新时间:2025-11-16 22:17:30

三角恒等变换所有公式分类以及推导方法 三角

三角恒等变换

 公式如下:

1、二倍角公式:

sin(2α)=2sinα·cosα

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan(2α)=2tanα/[1-tan^2(α)]

2、三倍角公式:

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

3、半角公式:

sin^2(α/2)=(1-cosα)/2

cos^2(α/2)=(1+cosα)/2

tan^2(α/2)=(1-cosα)/(1+cosα)

tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα

4、万能公式:

半角的正弦、余弦

 和正切公式(降幂扩角公式)

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

5、积化和差公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

6、和差化积公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

三角函数的起源:

早期对于三角函数的研究可以追溯到古代,古希腊

 三角术的奠基人是公元前2世纪的喜帕恰斯,他按照古巴比伦

 人的做法,将圆周分为360等份(即圆周的弧度为360度,与现代的弧度制

 不同),对于给定的弧度,他给出了对应的弦的长度数值,这个记法和现代的正弦函数

 是等价的。

喜帕恰斯实际上给出了最早的三角函数数值表,然而古希腊的三角学基本是球面三角学,这与古希腊人研究的主体是天文学有关,梅涅劳斯在他的著作《球面学》中使用了正弦来描述球面的梅涅劳斯定理

更多栏目