曲面是旋转平方根曲面,有关于z=0对称的上下两个分支,立体是上面的分支在z=1以下的部分。关于z轴对称,质心在z轴上。只要确定重心z的值即可。
体积=∫dv,z∈[0,1],取z=z与z=z+dz两个曲面之间的一个切片为dv,近似可以看成一个圆盘,体积=πz2dz V=∫πz2dz=πz3/3=π/3 dv对于原点的矩的积分为: M=∫zdv=∫πz3dz=πz^4/4=π/
4 重心z=M/V=(1/4)/(1/3)=3/
4 重心(0,0,3/4)
曲面是旋转平方根曲面,有关于z=0对称的上下两个分支,立体是上面的分支在z=1以下的部分。关于z轴对称,质心在z轴上。只要确定重心z的值即可。
体积=∫dv,z∈[0,1],取z=z与z=z+dz两个曲面之间的一个切片为dv,近似可以看成一个圆盘,体积=πz2dz V=∫πz2dz=πz3/3=π/3 dv对于原点的矩的积分为: M=∫zdv=∫πz3dz=πz^4/4=π/
4 重心z=M/V=(1/4)/(1/3)=3/
4 重心(0,0,3/4)