
逆矩阵的行列式等于行列式的倒数,因为AB=BA=E(单位阵),B是A的逆矩阵。所以|AB|=|BA|=1.当A是方阵时,|AB|=|A||B|,|BA|=|B||A|,有|B|=1/|A|。
矩阵逆矩阵的行列式等于原矩阵行列式的倒数。设A是一个n阶矩阵,若存在另一个n阶矩阵B,使得: AB=BA=E ,则称方阵A可逆,并称方阵B是A的逆矩阵。
逆矩阵的行列式的值不等于本身,逆矩阵的行列式的值与本身的行列式的值互为倒数。
可逆矩阵A的行列式,指的是矩阵A中的所有元素按既定顺序构成的行列式,常记为|A|或det(A)。特别地,任何一个单位矩阵的行列式的值都为1,即det(I)=|I|=1(其中I为n阶单位矩阵)。
矩阵逆矩阵的行列式等于原矩阵行列式的倒数。设A是一个n阶矩阵,若存在另一个n阶矩阵B,使得: AB=BA=E ,则称方阵A可逆,并称方阵B是A的逆矩阵。
矩阵逆矩阵的行列式等于原矩阵行列式的倒数。设A是一个n阶矩阵,若存在另一个n阶矩阵B,使得: AB=BA=E ,则称方阵A可逆,并称方阵B是A的逆矩阵。