当前位置:首页>维修大全>综合>

求数列的裂项公式怎么推导(数列裂项最全的十三种公式)

求数列的裂项公式怎么推导(数列裂项最全的十三种公式)

更新时间:2026-01-20 13:49:12

求数列的裂项公式怎么推导

裂项法求和

这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:

(1)1/n(n+1)=1/n-1/(n+1)

(2)1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)]

(3)1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)]

(4)1/(√a+√b)=[1/(a-b)](√a-√b)

(5) n·n!=(n+1)!-n!

[例1] 【分数裂项基本型】求数列an=1/n(n+1) 的前n项和.

an=1/n(n+1)=1/n-1/(n+1) (裂项)

则 Sn=1-1/2+1/2-1/3+1/4…+1/n-1/(n+1)(裂项求和)

= 1-1/(n+1)

= n/(n+1)

[例2] 【整数裂项基本型】求数列an=n(n+1) 的前n项和.

an=n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)]/3(裂项)

则 Sn=[1×2×3-0×1×2+2×3×4-1×2×3+……+n(n+1)(n+2)-(n-1)n(n+1)]/3(裂项求和)

= (n-1)n(n+1)/3

小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了.只剩下有限的几项.

更多栏目